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We derive an effective boundary condition for dense granular flow taking into account the effect of the
heterogeneity of the force network on sliding friction dynamics. This yields an intermediate boundary condi-
tion which lies in the limit between no slip and Coulomb friction; two simple functions relating wall stress,
velocity, and velocity variance are found from numerical simulations. Moreover, we show that this effective
boundary condition corresponds to Navier slip condition when the model of G. D. R. Midi �Eur. Phys. J. E 14,
341 �2004�� is assumed to be valid, and that the slip length depends on the length scale that characterizes the
system, viz. the particle diameter.
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I. INTRODUCTION

Granular media exhibit a wide range of flow regimes �1�,
as well as a plethora of dynamical instabilities �2�. Focusing
on gravity �or shear� driven flows, three regimes have been
pointed out: �1� the collisional �gaslike� regime, where en-
ergy is dissipated by the inelasticity of the collisions, �2� the
dense flowing �liquidlike� regime, in which particles undergo
long-lasting contacts and dissipation occurs through dynamic
friction, and �3� the static �solidlike� regime, which is ca-
pable of maintaining structures due to the threshold nonlin-
ear nature of static friction. These regimes were studied with
both experiments and discrete models, with the latter having
experienced a great advance in the last years, starting from
the work of Cundall and Strack �3�.

Reliable continuum models would be of great advantage
in simulating granular media, particularly when dealing with
complex geometries or flows; in fact a unifying theory is still
lacking. In this perspective, regimes �1� and �3� have been
worked out with some success in a variety of theoretical
studies, respectively, with the kinetic theory of granular
gases �4� and with continuum critical state soil mechanics
�5�. For the dense regime, various theoretical approaches
have been developed �and extensively reviewed in �6��; the
last more attractive one is that proposed by the French Re-
search Group on Divided Media �G.D.R. MiDi� based on the
inertial number I �see �7–10��, the importance of which was
already stated by Goddard �11�. However, despite the great
attention toward continuum models and rheologies, and de-
spite the work done to derive boundary conditions �BCs� for
rapid collisional flows �both in the case of bumpy �12,13�
and flat frictional walls �14��, little effort has been devoted to
develop realistic boundary conditions for the velocity field at
smooth or rough walls for the case of dense flows even if the
crucial role of side walls was recognized, for example, for
inclined chute flows �15�. A common experimental approach
developed to overcome this issue is the practice of gluing
particles to the walls in order to assume a no-slip boundary
condition in the interpretation of the results. This intelligent
choice is of fundamental importance but has, in our opinion,

two major drawbacks: at first, it is known �7� that for high
shear rates particles undergo strong slip at the glued
particles—bulk particles interface, a slip that adds some dif-
ficulty in holding the continuum hypothesis; thus it is not
clear whether the glued particles are part of the bulk or of a
bumpy wall so that boundary conditions must be expressed
on the first moving layer in contact with the glued one. The
second drawback of this experimental practice is the partial
applicability to real situations: the flow on smooth surfaces
such as in hopper discharge usually shows particles slipping
at the solid interface. Slip can be promoted or can be an
undesired phenomenon, often we are concerned with stick-
slip phenomena �16,17�, which are common in dry-friction
dynamics �18�; in all of these cases, a deeper understanding
of the behavior of granular materials flowing near a bound-
ary is needed, and the no-slip boundary condition is not the
most valid approach.

The scope of the present work is to determine boundary
conditions for the dense flow of granular materials. The
analyses developed for collisional flows �12–14� do not ap-
ply because in dense systems particles undergo long-lasting
contacts, the medium is composed by breaking and forming
of force-chain networks, and dissipation is mainly due to
friction. In a recent work �19� we used the mixing-length
model proposed by G. D. R. MiDi �7� and showed that using
a slip boundary condition instead of a no-slip one consider-
ably improved the predictions of the model in the vertical
chute configuration; there we used a Coulomb friction con-
dition, which could be a valid alternative to the no-slip con-
dition. In this work we go even further, showing for a simple
case that taking into account the effect of the heterogeneity
of the force network yields an intermediate boundary condi-
tion which lies in the limit between no slip and Coulomb
friction; moreover, we show that this effective boundary con-
dition corresponds to Navier slip-length condition if G. D. R.
MiDi’s model is assumed, and that the slip length depends on
the length scale that characterizes the system, viz. the par-
ticle diameter.

II. SIMPLE MODEL

We consider a single particle of mass m and diameter d
lying on a plane, moving with instantaneous velocity V; the*riccardo.artoni@unipd.it
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particle is subjected to a normal force P and to a tangential
force T. We will neglect, for simplicity, the effect of couples
acting on the particle, considering only translational sliding
movements. This choice is based on the consideration that,
documented in literature, for many flows of practical interest
�e.g., industrial ones�, flat surfaces reduce the rotation of par-
ticles, and rolling friction is generally considered small com-
pared to sliding friction �20�. Bumpy or geometrically more
complex walls are therefore outside the scope of this work.
We will assume that due to the heterogeneous nature of the
medium the normal force P is a random function of time
with a given distribution function. Alternatively, even T
could fluctuate but we assume for the sake of simplicity that
only the normal force does; qualitative results are not af-
fected by the choice of the fluctuating force. Let F be the
friction force; we consider the simplest model of solid fric-
tion, e.g., Amontons’ law, with only one friction coefficient
�,

F = �T if V = 0 and T � �P

�P else
� . �1�

The motion of the particle is calculated from Newton’s law
�Fig. 1�:

m
dV

dt
= T − F . �2�

If the normal force was constant, only two situations would
be possible, corresponding, respectively, to no-slip and Cou-
lomb conditions. But if the force fluctuated, the particle
would undergo slip and no-slip events, which globally rep-
resent a non-Coulomb slip phenomenon; our aim is to derive
an average expression for the slip velocity as a function of
the forcings. Let us consider a typical distribution of normal
forces of the form:

p�f� = a�1 − be−f2
�e−�f , �3�

as suggested in �21�, where f = P / Pave and a is a normaliza-
tion coefficient. This distribution of forces holds for normal
forces in uniaxial compression, in a spatial sense; we will
make the key assumption that, in dense granular flows, this
distribution acts also between successive rearrangements of
tangential forces in time. Our choice is supported by the fact
that results do not depend on the particular choice of the
distribution, apart from one point �the existence of a cutoff
value in the force� which will be discussed later, and whose
influence is limited. Moreover, Longhi et al. �22� showed for
a two-dimensional �2D� rapid granular flow that the distribu-

tion of forces has the same characteristic exponential tail as
in static media. We suppose further that the force is a piece-
wise linear function whose nodes are extracted from this dis-
tribution. Let Pave be the average value of the normal force.
We choose the time step between successive force rearrange-
ments to be equal to the relaxation time �=� md

Pave
; it follows

directly that, rescaling t by �, the time step over which the
force rearranges is one. Further rescaling leads to the dimen-
sionless variables: V�=V� m

Paved
and T�=T /�Pave, P�

= P / Pave.
Some comment is needed on the choice of the time step �.

When dealing with granular flows, we consider two funda-
mental time scales, the time scale related to shear ��= ��̇�−1,
and the time scale related to pressure, in this case �p=� md

Pave

�7�. Baran and Kondic �23�, for the case of rapidly flowing
granular materials �with a volume fraction �	0.4�, showed
that the autocorrelation function of the stress signal decays
strongly to 1 after a time which is dt
0.01��; they also
suggested from a comparison between two numerical experi-
ments that dt is an increasing function of ��. Such a depen-
dence is expected in the collisional regime, where the con-
trolling time scale is exactly ��. In the case of dense flows,
instead, �p��� is expected so the controlling time scale is
provided by pressure rearranging action and it can be safely
assumed that �	�p.

If we define 	�t� as

	 = �0 if V = 0 and T � �P

1 else
� , �4�

the equation of motion becomes

dV�

dt�
= 	��T� − P�� , �5�

from which we can compute the average rescaled slip veloc-
ity defined as

Vave� = � lim
�→+


1

�
�

0

�

dt���
0

t�
	�T� − P��dt . �6�

We solve numerically the equation of motion; an example of
the stick-slip behavior of the system is given in Fig. 2. An
initially motionless particle can start to move only if the
instantaneous normal force is below the yield threshold. A

P

T,Vd

FIG. 1. Schematics of the variables considered in this work.
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FIG. 2. Example of the local dynamics of the system.
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moving particle can decelerate only if the normal force is
higher than the threshold. Moreover, it is clear from Fig. 2
that the area in which normal forces oppose motion is larger
than the area in which they promote motion; it is the dynami-
cal nature of the system that causes the body to have a non-
null average velocity. It would be desirable to find a relation-
ship between the average slip velocity computed by means of
Eq. �6� and the rescaled average tangential force �which cor-
responds to a rescaled effective friction coefficient, being
�eff /�=T /�Pave�. After solving Eq. �5� it is possible to look
at the dependence of the statistics of the particle motion on
the average value of the force in Fig. 3.

III. DISCUSSION

The curves evidence a no-slip limit at low values of the
rescaled force T�, and a Coulomb limit for T�→1. The way
Vave� approaches zero depends on the nature of the distribu-
tion p�f�: if the distribution had an upper cutoff value, it
would be easy to conclude that the system had a sort of
yield-stress behavior at the wall, with a finite range of T�
giving Vave� =0; in the other case, without cutoff, the average
velocity would be zero only for T�=0. This is the only point
in which the choice of the distribution function qualitatively
changes something in the results; however, the fast decrease
in the tail in the distribution, if not giving a “plastic” behav-
ior, would give some sort of pseudoplastic behavior because
of the need to impose a certain stress to obtain an appreciable
slip. So, with a certain loss of exactness, it is possible to
assume also a yield-stress formulation for the boundary con-
dition �BC�.

It is interesting to note that also the variance of the distri-
bution of the instantaneous particle velocities, corresponding
to the concept of granular temperature, which we express as
�= ��V�t�−Vave�2�, where brackets denote time averaging,
grows when T� increases, which is similar to the behavior of
the slip velocity. Due to its definition, � is made dimension-
less with the position ��=� m

Pd . In Fig. 3 correlation between

granular temperature and average velocity is shown to fol-
low a power-law behavior. From a general standpoint, the
boundary conditions can be expressed with the help of the
following fitting functions �in the following, subscript ave
will be eliminated for the sake of simplicity�:

T� = � V�

V� + c1
��

, �7�

�� = c2V��, �8�

where ��0, ��0.5, and c1 ,c2�0 are fitting parameters. A
very good fit is obtained for �
0.28, �
1.5, c1
0.51, and
c2
1.8. In the figures the fit is represented as a solid line.
Equations �7� and �8� are the simplest expressions for the
effective boundary conditions that can be applied at the wall
characterized by a particle-wall friction coefficient �. These
functions are an important result of this work: we have ob-
tained two boundary conditions which are characterized by
simplicity and direct applicability to continuum simulations
of granular flows.

IV. DEPENDENCE ON THE PARAMETERS OF THE
MODEL

In the preceding section we showed that the average be-
havior of stick-slip events can be interpreted by means of
simple relations between dimensionless stress and velocity.
Our aim is to propose a simple tool allowing treatment of the
regime between no slip and continuous sliding in an average
sense.

The parameters of the proposed functions should be ob-
tained experimentally; however some issues must be consid-
ered, which are related to the rather simple model we as-
sumed, to see how the obtained relations depend on the
assumptions made. First of all, we used a particular choice of
the force distribution p�f� �21�, taken from statistics of static
granular packings. In Fig. 4 we show how the qualitative
behavior of the obtained functions is not affected by the par-
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FIG. 3. Dependence of statistics of particle velocity on statistics of force. �a� Rescaled average pulling force vs average slip velocity. �b�
Rescaled velocity variance vs average slip velocity. Best fits from Eqs. �7� and �8� are also included.
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ticular choice of the force distribution but seem to come only
from the stochastic behavior of the force. Other distributions
were also considered, giving the same qualitative behavior.
From a more quantitative standpoint, the amount of slip in-
creases as the variance of the distribution increases �increas-
ing � corresponds to increasing the variance of the force
distribution�. Another issue that shall be considered is the
friction model assumed, which is quite simple. Assuming a
different model, with two friction coefficients �a static fric-
tion coefficient higher than the sliding friction coefficient�,
does not affect the results, also quantitatively �see Fig. 5�.
Again, the main feature causing the intermediate stick-slip
behavior is the randomness of the force, related to the pres-
ence �and the mechanisms of breaking and forming� of force
chains. Regarding the variations in the force in time, we

identified as a typical time scale the rearrangement time �

=� md
Pave

; this choice might be questionable, particularly in
high shear situations �when the inertial number I1�, where
the characteristic time related to shear is small compared to
the rearrangement time. Therefore the validity of our ap-
proach should be rigorously valid in the limit of small I
while experimental work is needed to verify and extend its
validity in other regimes. In this perspective it can be useful
to verify whether the time step over which the force changes
has an impact on the final curves although �t	� seems a
reasonable assumption. From results reported in Fig. 6 we
can see that the larger the time step, the larger the amount of
slip predicted by the model for the same average pulling
force. However, it is important to underline that the qualita-
tive behavior of the effective boundary conditions does not
depend on particular choices for the distribution, the time
step, or the friction model, and that it can be well represented
by means of the proposed Eqs. �7� and �8�. However, the
parameters in these equations should be determined experi-
mentally, from local measurements of slip velocity and wall
stresses; in this perspective, we suggest that, to develop
boundary conditions more suitable for gravity �i.e., stress�
driven flows, slip measurements should be also done in grav-
ity driven situations, for example, in the vertical chute con-
figuration.

V. INTERPRETATION OF THE RESULTS BY MEANS OF
A NAVIER BOUNDARY CONDITION

Navier boundary condition, relating the slip velocity and
the gradient of the velocity normal to the boundary via a slip
length �, is a common way to characterize slip in fluid flows
in microchannels and nanochannels; however, there is not a
single plot of this condition in the V� vs T� diagram because
such a plot needs information on the relationship between
stresses and deformation rates in form of constitutive rela-
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tions. For a Newtonian fluid, considering the force acting on
a surface S	d2,

V� = �
�

�
�mP

d5 T�, �9�

which is linear and parametric in �
�
�mP

d5 . A Bingham yield-
stress fluid will have an explicit relation of the form:

V� = �
�

��
�mP

d5 �T� − TY�� �for T� � TY�� , �10�

where TY� is the rescaled yield stress and �� is the viscosity
coefficient in Bingham’s model. So a Navier condition for
Bingham’s model in the V� vs T� plot is a line shifted by TY�
and again parametric in �

�
�mP

d5 .
Both of these relationship obviously do not conform to

the behavior obtained from the model developed in this
work; assuming a mixing-length model as G. D. R. MiDi’s
�7�, where T

P =��I�, with I= �̇
�P/md

�the difference in the ex-
pression of I of the previous literature is due to the fact that
here P is a normal force, not a pressure�, the assumption of
��I�=�s+

�2−�s

I0/I+1 �taken from Jop et al. �8,15�� yields for a
Navier BC:

V� =
�

d

T� − �s/�
�2/� − T�

�for T� � �s/�� , �11�

which reaches an asymptote for T�→�2 /�, and is zero in
the range 0−�s /�. Thus, to unify the curves and represent
the results obtained from the simple model of wall friction
presented in this work, � must be a function of the form:

� = kd��T�� , �12�

where ��T�� accounts for the change in the position of the
asymptote and can be expressed simply as

� =
�2/� − T�

1 − T�
. �13�

An important result is given in Eq. �12�; to unify the curves
as obtained in the “experiments,” � must be a multiple of d:
this is actually an important result, being d the only internal
length scale of the system, and so the best choice as a basis
for estimating the slip length. This applies also to the other
BCs, where � should be a multiple of d, as well, but also a
function of P and � �assuming m=�d3 yields �	 �

�
d

�P�
�. The

typical form of V� vs T� curves for the various models is
given in Fig. 7.

To resume, the intermediate efficient boundary condition
we are looking for can be qualitatively expressed as Navier
slip condition in a mixing-length framework, the slip length
corresponding to a multiple of the particle diameter. A step
further can be made in the direction of determining a value
for �. Let us admit the yield-stress behavior of Pouliquen’s
form for ��I�, and suppose that �2
� �remember that � is
the particle-wall friction coefficient�. In this perspective the
slip length is simply proportional to the particle diameter and

the best fit gives � /d
0.2. This value gives a sort of mini-
mum slip length; in the case with �2�� the slip length
diverges for T�→1.

It is important to note that V� is an analog of the inertial
number I for near wall flows, and T� is an effective wall
friction coefficient as ��I� is for the bulk; thus it is interest-
ing to note that the shape of the curve T��V�� is very close to
that of ��I�; this can lead to some ideas on the origin of the
effective friction coefficient in the bulk remembering that the
effective wall friction coefficient derives from the assump-
tion of heterogeneous forces.

In this work we do not aim to define the correct functional
form for these BCs �even if a very good fit was obtained for
this simple case� but we want to underline that real boundary
conditions �even in simplified setups� are not no-slip-like or
Coulomb-like, and assumption of one of these limiting BCs
can introduce errors in the physical validity of granular flow
models; this slip behavior can be captured by a modified
Navier condition, where the slip length is proportional to the
particle diameter.

To resume, a simple model of a particle sliding with the
simplest frictional law on a plane has been developed in this
paper to determine effective boundary conditions for dense
granular flows. To account for the heterogeneity of the me-
dium, the particle is subjected to a random normal force
while a constant tangential force is assumed for simplicity.
The dynamics consists of stick-slip events, which are related
to the heterogeneity in the stress field; we reported the re-
sulting dependence of the average tangential force on the
average slip velocity and on the variance of the velocity of
the particle �i.e., granular temperature�, thus providing two
possible effective boundary conditions for the velocity and
granular temperature fields. The results are well fitted by
simple laws and represent for the velocity field an interme-
diate behavior between Coulomb’s law �at high velocities�
and the no-slip boundary condition. Granular temperature is
related to the velocity by a simple power-law behavior. The
functional form we propose can be adopted as a general tool
to quantify this intermediate behavior, as it does not depend
on the particular choice of the force distribution or the fric-
tion model adopted. The approach is developed for the situ-

FIG. 7. Rescaled average velocity vs average pulling force for
different BCs/constitutive laws. The slope of Newton and Bingham
lines is �

�

��
�mP

d5 , where � is assumed to be almost constant with
respect to T�.
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ation, of wide applicability, of flat walls. The case of bumpy
walls, which is not treated in the present contribution, re-
quires more complex models, including rotations of the par-
ticles and higher dimensionality, and for these reasons it
should be addressed by means of numerical simulations tak-
ing into account also the bulk behavior; however, the func-
tions developed in this work, which describe the intermediate
stick-slip behavior, could be tested in that case and be a basis
to develop a posteriori correlations. In addition, we demon-
strated that the curve obtained by numerical simulation sat-

isfies a modified slip-length Navier boundary condition
within a mixing-length model of granular flow, with the slip
length being proportional to the characteristic length of the
system, the particle diameter. Further experimental work is
needed to estimate the parameters and test the validity of the
boundary conditions developed in real situations. In this per-
spective, we propose that experimental work should be done
in assessing slip velocity—wall stress relations in gravity
driven flows, and suggest for such an estimation the vertical
chute geometry.

�1� H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259 �1996�.

�2� P. King, P. Lopez-Alcaraz, H. Pacheco-Martinez, C. Clement,
A. Smith, and M. Swift, Eur. Phys. J. E 22, 219 �2007�.

�3� P. A. Cundall and O. D. L. Strack, Geotechnique 29, 47
�1979�.

�4� J. T. Jenkins and S. B. Savage, J. Fluid Mech. 130, 187 �1983�.
�5� A. N. Schofield and C. P. Wroth, Critical State Soil Mechanics

�McGraw-Hill, New York, 1968�.
�6� O. Pouliquen and F. Chevoir, C. R. Phys. 3, 163 �2002�.
�7� G. D. R. Midi, Eur. Phys. J. E 14, 341 �2004�.
�8� P. Jop, Y. Forterre, and O. Pouliquen, Nature �London� 441,

727 �2006�.
�9� O. Pouliquen, C. Cassar, Y. Forterre, P. Jop, and M. Nicolas,

Proceedings of Powders & Grains 2005, edited by R. Garcia-
Rojo, H. J. Herrmann, and S. McNamara �Balkema, Rotter-
dam, 2005�, p. 850.

�10� F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. Chev-
oir, Phys. Rev. E 72, 021309 �2005�.

�11� J. D. Goddard, Acta Mech. 63, 3 �1986�.

�12� M. W. Richman, Acta Mech. 75, 227 �1988�.
�13� M. W. Richman and C. S. Chou, ZAMP 39, 885 �1988�.
�14� J. T. Jenkins and M. Y. Louge, Phys. Fluids 9, 2835 �1997�.
�15� P. Jop, Y. Forterre, and O. Pouliquen, J. Fluid Mech. 541, 167

�2005�.
�16� A. Baldassarri, F. Dalton, A. Petri, S. Zapperi, G. Pontuale,

and L. Pietronero, Phys. Rev. Lett. 96, 118002 �2006�.
�17� S. Nasuno, A. Kudrolli, A. Bak, and J. P. Gollub, Phys. Rev. E

58, 2161 �1998�.
�18� F. Heslot, T. Baumberger, B. Perrin, B. Caroli, and C. Caroli,

Phys. Rev. E 49, 4973 �1994�.
�19� R. Artoni, A. Santomaso, and P. Canu, Europhys. Lett. 80,

34004 �2007�.
�20� U. Tüzün, M. J. Adams, and B. J. Briscoe, Chem. Eng. Sci. 43,

1083 �1988�.
�21� D. M. Mueth, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 57,

3164 �1998�.
�22� E. Longhi, N. Easwar, and N. Menon, Phys. Rev. Lett. 89,

045501 �2002�.
�23� O. Baran and L. Kondic, Phys. Fluids 17, 073304 �2005�.

ARTONI, SANTOMASO, AND CANU PHYSICAL REVIEW E 79, 031304 �2009�

031304-6


